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The definition of plane gravitational waves is generalized to include the case in 
which rays are not orthogonal to the two-dimensional wave surfaces. All Einstein 
spaces and some new solutions of the Einstein-Maxwell equations of this type 
are given. 

1. I N T R O D U C T I O N  

The naive notion of plane gravitational waves--namely,  the existence 
of coordinates in which surfaces of constant g,r at constant coordinate time 
are Euclidean 2-spaces "moving" at fundamental velocity in t ime-- lends  
itself to an invariant definition of plane gravitational waves according to the 
symmetry groups of g,t~, which appears to be a valid generalization of the 
usual definition of plane gravitational waves. 

Section 2 contains the definition of these waves. Reasons for interpret- 
ing them as waves are discussed in the following sections. In Section 8 a list 
of exact solutions is given. 

The following conventions are used: i, j ,  k , . . .  = 1,2, 3; a, fi, 7 . . . .  = 
1,2, 3, 4; sign(g~r = 2; x denotes Einstein's gravitational constant. 

2. D E F I N I T I O N  AND CANONICAL F O R M S  

Definit ion 2.1. The metric tensor g~B of a nonflat four-dimensional 
Riemannian manifold V4 of signature 2 defines "generalized plane gravita- 
tional waves" if g~a'satisfies the field equations and if its symmetry group G, 
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contains at least one Abelian three-parameter subgroup G ~ C G r which acts 
on hypersurfaces V3, and has a one-parameter subgroup G l CG ~ with 
lightlike trajectories. 

Theorem 2.1 (Kellner, 1975, p. 164). The hypersurfaces V 3 are 
either pseudo-Euclidean or null, and correspondingly there are two 
types of such waves which, in "canonical coordinates," take the 
following forms: 

Type I: V 3 null ds 2 =gkldxk dxt + 2dxl dx 4, [gkll=O=gll 

Type II: V 3 pseudo-Euclidean ds 2 =gkldxkd.xl+(dx4) 2, [gill=0 

where the ggt are arbitrary functions of X 4 only. In both cases 
{ ~  =8~} is a basis of the Lie algebra of generators of G ~ ~ being 
the generator of G~. The hypersurfaces V 3 are given by x 4 =const.  

It will be noted that fields of type II are stationary. However, as will be 
shown in the following sections, this does not necessarily exclude their 
interpretation as waves. 

3. RAYS AND WAVE SURFACES 

Definition 2.1 is equivalent to the existence of coordinates such that 
g~/j =g~o(x I - x 4 ) ,  where the x 1 and x 4 coordinate lines are space- and 
timelike, respectively. 

Moreover, V l = { x ~ l d x 2 = d x  3 =0,  dx I =d x  4} defines a geodesic null 
congruence so that, according to the naive notion of plane waves, one is 
tempted to call the V 1 "rays" and the 2-surfaces V 2 given by V 2 = {x~lx i -  
x 4 = const) of constant g~a at constant time x 4 "wave surfaces." 

These terms can be defined in an invariant way as follows: the rays are 
given by the lightlike trajectories V 1 of G 1 C G O and the wave surfaces by the 
two-dimensional trajectories V 2 of the "homogeneity group" G 2 C G ~ G1 

G 2 �9 
This definition of wave surfaces as two-dimensional trajectories of 

Abelian two-parameter symmetry groups differs from the usual definition of 
wave surfaces as spacelike (Euclidean) 2-surfaces orthogonal to the rays 
(Ehlers and Kundt, 1962, p. 85) but it shall be shown that the former 
includes the latter as special case and thus allows a more general concept of 
plane gravitational waves. In particular, as is the case with all fields of type 
II, the rays need not necessarily be orthogonal to the wave surfaces 
anymore. The rays always have vanishing shear and expansion whereas the 
twist as well as the covariant derivative of ~ does not vanish in general. 
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(For a definition of these "optical parameters" see Ehlers and Kundt, 1962, 
p. 58.) 

The V 2 defined above can be Euclidean as well as pseudo-Euclidean or 
null. For generality's sake, all three possibilities shall be admitted and 
respectively described as Euclidean, pseudo-Euclidean, or null waves. 

4. ANALOGY TO PLANE ELECTROMAGNETIC WAVES 

Pure ( g ~  satisfies the vacuum field equations) plane gravitational 
waves are usually defined in analogy to plane electromagnetic waves in flat 
space-time given in appropriate Lorentz frames by field tensors 

Fa#=KaBf(xl--x4), KaB=-KBa ~R, KaBKaB=~(aBKaB=O 

or superpositions of these (Synge, 1956). 
Such fields admit a five-parameter symmetry group. In analogy to this 

property Bondi, Pirani, and Robinson (1959) defined pure plane gravita- 
tional waves as vacuum fields admitting a five-parameter group of symme- 
tries. 

Another definition is given by Ehlers and Kundt mainly in analogy to 
the geometrical properties of the rays of plane electromagnetic waves of the 
above type: 

A nonflat vacuum field is a plane wave if and only if it admits an 
Abelian G 3 with three-dimensional lightlike trajectories containing a light- 
like G 1 (Ehlers and Kundt, 1962, p. 95, Theorem 2-5.8) (Incidentally, one 
need not demand the existence of the G~, since it can be shown that this 
follows automatically from the existence of the G 3 with three-dimensional 
lightlike trajectories and the vacuum field equations.) 

One can show that in both cases coordinates exist in which the line 
element takes the form 

ds 2 =gz2( dx 2 )2 + g33( dx3 )2+ 2g23 dx 2 dx 3 + 2dx'  dx  4 

where the gob, a, b=2,  3 are functions of x 4 satisfying the field equations 

1 ab cd (gabgabl4)[4-~-~g gbcl4g gda[4=0 a,b,c,d=2,3 

The two definitions are thus equivalent. 
From Theorem 2.1 it follows that these waves represent a subclass of 

the generalized plane vacuum waves and it is easily seen that this subclass is 
characterized by the fact that the rays are orthogonal to the wave surfaces-- 
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an obvious consequence of the fact that the rays of the particular electro- 
magnetic waves used as pattern are also orthogonal to the wave surfaces. 

There is, however, no particular reason to restrict the analogy to just 
these special electromagnetic plane waves, and it can be shown that the 
generalized plane gravitational waves can be put into complete analogy with 
electromagnetic plane waves once these are defined in a more general and 
covariant way: 

Definition 4.1. The tensor field F,~ = - F ~ ,  describes plane electromag- 
netic waves (in vacuo) if and only if 

(i) F"r =0,  1~"~;r =0  
(ii) 11 --'�89 ~/~ :0, 12 = �89 "~ =0 

(iii) F~t ~ admits an Abelian three-parameter symmetry group G ~ with 
one- and two-parameter subgroups G~ and G2, G 1 CG2, whose 
trajectories are geodesic null lines V 1 and two-dimensional 
Euclidean, pseudo-Euclidean, or null surfaces V2, respectively. 

Condition (ii) guarantees transport of electromagnetic energy at the speed of 
light (Pirani, 1,956). Condition (iii) implies the existence of rays V 1 and wave 
surfaces V 2 in the same way as in the case of the generalized plane 
gravitational waves. For generality's sake, also pseudo-Euclidean and null 
wave surfaces have again been permitted. 

Such waves contain waves of type F,~ =K,~af(x 1 - x 4 ) ,  where the rays 
are orthogonal to the wave surfaces, as special cases. In general the rays 
need not be orthogonal. The existence of such fields is shown in Section 8. 

From the standpoint of symmetry, the generalized plane gravitational 
waves are now clearly seen to be in complete analogy to these plane 
electromagnetic waves. 

All generalized pure plane gravitational waves, as well as all other 
Einstein spaces satisfying Definition 2.1 are listed in Section 8. 

5. ASSOCIATION WITH PLANE ELECTROMAGNETIC WAVES 
V I A  THE EINSTEIN-MAXWELL EQUATIONS 

In canonical coordinates the Ricci tensor of the waves of type I takes 
the form 

R,~ = R44~ 
l a l f l  

where ~"=8~ is the lightlike generator of the G 1. In this case the Rainich 
] 

conditions are satisfied: 

R--O, po~B-- l~ D~v~B *~p~,L o -- 4ZL/~.~'L Up 
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which imply (Witten, 1962) the existence of a tensor field 

l~Bp r 7 ~  F~=-F~,:R~o=x(FpoF~ j 

From this one gets the idea that apart from vacuum fields there might also 
exist solutions of the Einstein-Maxwell equations of type I. Because of 
12 +i2 z = l o ~,,~ =0 the corresponding Maxwell fields would represent 
electromagnetic radiation (Pirani, 1956). Such solutions with plane electro- 
magnetic waves with rays orthogonal to the wave surfaces have been found 
and discussed by Takeno (1958). 

It appears that also certain waves of type II have Ricci tensors of the 
above form, and the question arises again whether there are solutions of the 
Einstein-Maxwell equations with these fields. The answer is yes, and 
solutions of this type with plane electromagnetic waves with rays nonor- 
thogonal to the wave surfaces are given in Section 8. 

This shows that also the stationary fields of type II can correspond to 
transport of energy at the speed of fight. 

6. LICHNEROWICZ'S CRITERION 

In his general definition of gravitational radiation of arbitrary symme- 
try Lichnerowicz demands the existence of wave fronts (3-surfaces of 
discontinuity in the second derivatives of the g~o) and arrives at the 
conclusion that a nonflat space-time describes gravitational radiation if 
there exists a lightlike vector ~/~ satisfying R ~ = ~ - ~ / ~  and ~R~B ~ =0 
(Zakharov, 1973). (Vacuum fields of this type have Riemannian tensors of 
Petrov type N.) 

These conditions are satisfied by all generalized plane gr~/vitational 
waves with rays orthogonal to the wave surfaces as well as by all solutions 
of type II of the Einstein-Maxwell equations given in Section 8 and by a 
certain subclass of the vacuum fields of type II as indicated in Section 8. In 
all cases the lightlike vector ~/~ is given by ~/~ = ~ .  

1 
On the strength of Lichnerowicz's criterion this provides further evi- 

dence for the claim that also the stationary fields of type II can describe 
radiation--even though in this case possible wave fronts S which are given 
by spaces normal to ~/. are not "parallel" to the wave surfaces any more: 
S tq V 2 can at most be one-dimensional. 

7. ACTION ON TEST PARTICLES 

If ~ ~ denotes the projection of the lightlike Killing vector ~ ~= ~ into 
2_ 1 

the three-dimensional rest space of an observer moving at 4-velocity u ~ 
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along a timelike geodesic, the longitudinal effect of the gravitational field 
can obviously be described by the scalar L =  ~, b ~, where b ~ =Rot~vuO uav ~ 

• 
gives the acceleration of infinitesimally close test particles relative to the 
observer, v ~ being the vector of geodesic deviation. 

From u~b ~ =0 it follows that L =  ( ~b" = ~ b  ~ = ~R~vuPur Y. Thus 
• 1 1 

all fields mentioned in Section 6 satisfying Lichnerowicz's criterion have 
L = 0  since ~, =%,  and are purely transverse in this sense, whereas in the 

1 
remaining fields listed in Section 8 longitudinal effects do occur. Since 
Lictmerowicz's criterion is neither sufficient nor necessary for the existence 
of wave fronts, such effects are not necessarily excluded by this criterion. 

8. EXACT SOLUTIONS 

The exact solutions of type I of the vacuum and Einstein-Maxwell 
equations are given elsewhere (Landau and Lifschitz, 1963; Takeno, 1958); 
thus only solutions of type II are listed. As noted earlier rays are not 
orthogonal to the wave surfaces in this case. 

Einstein Spaces. For vanishing cosmological constant all solutions 
have been given by Dautcourt, Papapetrou, and Treder (1962). By suitable 
coordinate transformations these metrics can be considerably simplified. 
Together with the solutions with nonvanishing cosmological constant they 
can be written in compact form as follows (Kellner, 1975, p. 172): 

1: 

ds2=X2/3[(k,2I+k22)(dx2)2+(dx3)2+ 2k,2dx 1 dx 2 + 2k23dx 2 dx 3] 

2: 

dsa:x2/3[kl3(dx2)2q-( k,3f -~dxI 4q_ k23Iq_k3 ' )(dx3)gq_2k,3dxldx 3 

+ 2(k13I+ ka3 )dx 2 dx 3] + ( dx 4 )2 

3: 

ds2=X2/3[(k121+k22)eaI(dx2)2q-e-2aI(dx3)2-k2k12ealdxldx 2] 

+(axe)  2 
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4: 

 =X2J3[l e 3a'+ ,2,+k22)ea'  2,i+ 33e 
[ \ I.oa) 

+ 6ak l2eal dxl dx2 + 2 (3a)2k33 e - 2al dx2 dx3 ] _~. ( dx 4 )2 

a ~ 0  and kmn are arbitrary constants, I = f d x 4 / X  an d X is a function of X 4 

defined according to whether the cosmological constant X is greater, equal 
to, or less than zero: 

~=0:  

0, X=otX+fl, or2 "}- fl 2 =/= 0, or= +_3a, 

Case 1 does not occur here, since then R~#v~ =0.  
h>O: 

case 2 
cases 3 and 4 

X:aeVX'+fle -rx 4, 

+-{_~ 
a2 -~- ~2 5z~ O, 

cases 1 and 2 

cases 3 and 4 

~=(3X) 1/2, 

h<0: 

3 2 X=acos ' /x ,  a = ( ~ a / T )  , y = ( - - 3 X )  '/z only cases 3 and 4 occur 

These solutions are defined in intervals J C R in which X:~0. In all 
cases s-(-Ig,~tjI) 1/2. s = o  thus implies singularities of the metric. The 
constants can always be chosen so that sign(g~,)=2 in J. Of these solutions 
the metrics which satisfy Lichnerowicz's criterion for gravitational radiation 
(and thus have Riemann tensors of Petrov type N) are given by solution 2 
above with h = 0. 

Solutions of the Einstein-Maxwell Equations. Special solutions of type 
II satisfying the Einstein-Maxwell equations with electromagnetic radiation 
are given by (Kellner, 1975, pp. 153) 

ds2 =gkldxk dxl-]-( dx4 ) 2, gl l  = 0  
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and 
. 

gln z kln 

g22 = - - ~  k~2( x4 )~ + a~2x 4 + ~ 

g23 ~- -- ~kl2kl3( x4 )2+ak13 x4 q-k23 

_ r k2 r 4 
g33 -~ fl-2 13~, x )2+bk13 x4 +k3a 

k,,n, a, b, tiER, ak13 =bk12, kll =0, five0 

The corresponding Maxwell field is given by F ~ =(2/fl)8~184~ 
2: 

gin ~kln, g22 ~k22 

g~ = ( 1 / ~ ) k ~ x '  + k~ 

g33----( ---~-1 k 2 f l  2 22-~-~kl 2 ) (x4)z+(a+f lkz3)x4+k33  

kmn , a,fl~R, kll =k12 =0, k22 > 0 ,  k13 =)~:0, 

The corresponding Maxwell field is the same as in solution 1. 
3: 

gln =kin, g22 =ka2(x4) 2 

g23 = "~-~ k22( x4 )2-1-k23 

k 2 
g33=_K2~21n21x41_t_oln[x4]+__ . ~ 2  k22( X e  4 ) 2 +k33 

k~n,et, o,e~R, kll =kl2 =0, k13 ~0, 

k22 > 0 ,  e = 0 ,  1, ot =/: 0 

The corresponding Maxwell field is given by F ~/~ =(2/ax4)6~184~. 

Br 

Kellner 
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In all cases the constants can be chosen in such a way that g.r has the 
right signature on the whole real axis with the only exception of the singular 
point x 4 =  0 in case 3, where I g.t~l=0 for any choice of the constants. 
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